Euso Front End ASIC

M. Pallavicini INFN Genova

on behalf of the Genova group: D. De Marco, F. Fontanelli, V. Gracco, P. Musico, M.P., A. Petrolini, F. Pratolongo, M. Sannino

Talk overview

- Motivations, constraints and requirements
- Analog Sections design
- Digital Sections design
- The "prototype 0" design
- Phase A plans

Euso Meeting, October 2-5, 2001 Annecy-le-Vieux, France

Front End functions

• The EUSO front end is needed to:

- Pre-Amplify MAPMT signals (charge ≈5 10⁵ e⁻, in ≈5 ns)
- Discriminate these signals with a programmable threshold (much lower than 1 photoelectron signal)
- Count single photons during externally controlled time periods (GTUs, ~ 1 μs)
- Mask noisy or bad channels
- Provide information for the trigger system (counter thresholds, rows and columns logic)
- Accept commands and setup parameters from a serial line

Euso Meeting, October 2-5, 2001 Annecy-le-Vieux, France

Constraints and Requirements

- Critical features are (optimal trade-offs to be identified in Phase A)
 - Optimal gain and input impedance to match the Photon Detector signal.
 - Double hit resolution ~10-15 ns
 - Time information with precision ~ 10 ns would be nice.
 - Power Consumption must be low. Front end should eat ~1 mW per ch.
 - Option: Storing capability well above a full EAS event (~100 μs)
 - Option: Trigger capabilities to improve trigger efficiency and decrease the energy threshold.

Euso Meeting, October 2-5, 2001 Annecy-le-Vieux, France

Base block diagram

Project for a FE Custom Chip

- To match the speed and power consumption requirements, radiation tolerance, compactness and modularity, it is mandatory to build a dedicated ASIC
 - No existing chip (to our knowledge) seems to meet all EUSO requirements
- CMOS sub-µm technologies provide very low power consumption, are fast enough and are almost "naturally" radiation tolerant.
 - Two technologies identified (see www.ge.infn.it/euso/fee.html)
 - AMS 0.35 mm, available through EuroPractice
 - **IBM 0.25 mm**, available through RAL

Euso Meeting, October 2-5, 2001 Annecy-le-Vieux, France

ASIC physical position

PCB with voltage dividers, 4 ASICs and other Front End devices

First 2x2 prototype developed and built

micro cell

(256 pixels)

Euso Meeting, October 2-5, 2001 Annecy-le-Vieux, France

INFN

Pre-Phase A activity in Genova

- INFN has approved and funded an RD project whose goal is to prove the feasibility of this approach.
 - Project started in September 2000
 - Many possible pre-amplifiers and comparators have been designed and simulated
 - A test chip has been designed and built (submitted on June 6th, 25 pieces delivered to Genova on september 5th)
 - AMS 0.35 mm through EuroPractice
 - PCB for chip test has been designed and submitted for fabrication.

Euso Meeting, October 2-5, 2001 Annecy-le-Vieux, France

The "prototype 0" chip

- We have designed and built a simple ASIC to prove the feasibility of the EUSO front end
- This chip contains:
 - 3 different pre-amplifier designs (Options I, II, III)
 - 3 different comparators (Options A,B,C)
 - All 9 combinations of the above
 - DAC for threshold control
 - A minimal digital section to control DACs
- Chip layout allows testing of all options and of the individual elements (pre-amplifier and comparators)

Euso Meeting, October 2-5, 2001 Annecy-le-Vieux, France

Pre-Amplifier design (I)

10

INFN

Pre-Amplifier design (II)

EUSO

Option II Current Mirror Amplifier

11

INFN

Pre-Amplifier design (III)

EUSO

Discriminator design (I-II-III)

Test chip simulations: power

- Full simulations have been performed to compute power consumption and double hit resolutions
- So far, major effort has been devoted to keep power requirements well within the 1 mW/ch limit (i.e. no power, no Euso!)

DESIGN	$I_{th}(\mu A)$	<i> (µA)</i>	< P > (µW)	Width. (ns)
CMA2+ COMPA-A	97.0	260	780	16.1
CMA2+ COMPA-B	98.0	332	996	18.8
MA2+ COMPA-A	71.5	210	630	13.3
MA2+ COMPA-B	71.5	286	858	22.2
BCMA2+ COMPA-A	32.5	129	387	16.6
BCMA2+ COMPA-B	33.0	187	561	17.4
BCMA2+ COMPA-C	33.0	142	426	11.7

Euso Meeting, October 2-5, 2001 Annecy-le-Vieux, France

Euso Meeting, October 2-5, 2001 Annecy-le-Vieux, France

EUSO

Double hit resolution ≈ 20 ns, depending on design and threshold

Substantial improvement possible, increasing the power consumption

M. Pallavicini - INFN Genova

15

Prototype 0: pictures

Problem: full recovery of light

No or 1 hit in one GTU Below counter threshold Above counter Thr. Euso <u>trigger</u> is done in the macrocell electronics using the fast-OR signals gated by the on-chip counters.

 Only the green pixels are read by the system. The photons in the red boxes are lost, degrading both the energy and the angle resolution

Euso Meeting, October 2-5, 2001 Annecy-le-Vieux, France

Counters Readout (I)

- At each GTU we can store these counters, <u>a digital</u> <u>picture of the atmosphere with 1 µs integration time</u>, in an internal memory, deep enough to wait for the main trigger to occur.
 - 200 GTUs require 200 x 64 x 10 bits = 16 Kbytes
- The MacroCell electronics can read this memory when the main trigger occurs (for all relevant chips)
 - With 1 Mhz serial line, 16 ms read-out time
 - Acceptable ?? Strongly depends on trigger rate!

Euso Meeting, October 2-5, 2001 Annecy-le-Vieux, France

Counters Readout (II)

- The system could be also useful for slow (atmospheric, metheorites) events
- An additional memory could store the sum of photons gathered in longer periods.
 - If you sum 100 GTUs and use a 16 Kbytes memory you can store the whole information for events as long as 20 ms.

Euso Meeting, October 2-5, 2001 Annecy-le-Vieux, France

Conclusions

- All pre-phase A activities suggest that a <u>full custom ASIC is</u> required for the front end electronics
- <u>Requirements</u> dictated by physics and space environment have been <u>identified</u> and must be refined and traded off in phase A
- INFN has funded an RD project to develop this device
- A lot of work already done. A study prototype is built. Results will give a final answer to the main question (power vs speed)

