

Extreme Universe Space Observatory: Power Distribution, Data Link, and Control & Data Handling

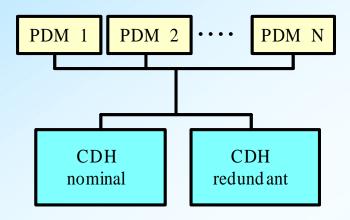
Contacts:

Patrizio F. Tua (project manager) tel.: +39 02 25075 332 e-mail: tua.p@laben.it
Luca Scandelli (electronics engineer) tel.: +39 02 25075 393 e-mail: scandelli.l@laben.it
Massimo Marchese (thermal/mechanical engineer) tel.: +39 02 25075 394 e-mail: marchese.m@laben.it

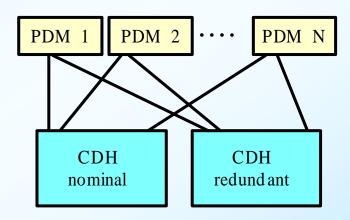
Purpose and Contents

This presentation is the beginning of a phase A study (under ASI funding) on some items of EUSO instrument.

- A) It is based upon:
 - EUSO IDD, issue 1 C, IFCAI/CNR, August 2001;
 - Study Report on EUSO, INFN Genova, March 2001.
- B) The overall approach is analyzed in terms of:
 - Power distribution;
 - Data link;
 - Control & Data Handling (CDH) unit and processor selection.
- C) An estimation is made for:
 - Telemetry budget and CDH memory size.


Basic Assumptions

- A) EUSO focal surface electronics is divided into N (~100) identical modules
- B) All other functions will be located in the CDH units
- C) Single Point Failure (SPF) failure tolerance is required at system level



Power Distribution Trade-off

Power Bus Connection

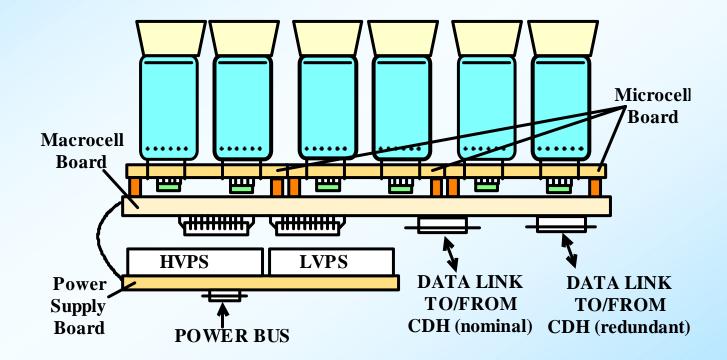
- FAILURE-FREE HARNESS
- ON/OFF SWITCHING AT PDM LEVEL
- N/R BUS OR-ING AT CDH LEVEL

Star-Point Connection

- ON/OFF SWITCHING AT CDH LEVEL
- N/R BUS OR-ING AT PDM LEVEL

Power Distribution Trade-off

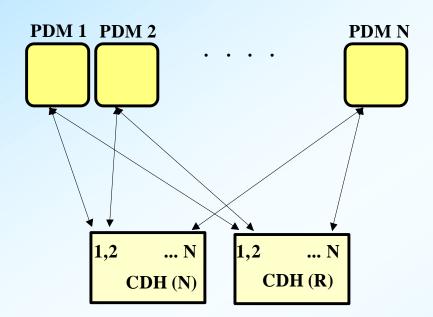
ASSUMPTIONS:


- Each macrocell has its own power supply board;
- The power supply received is the (unconditioned) 120 V from CEPF distributed by CDH;
- The power supply board generates both HV and LV;
- The operational requirements depend on the power distribution philosophy;
- A pictorial view is given in the following figure.

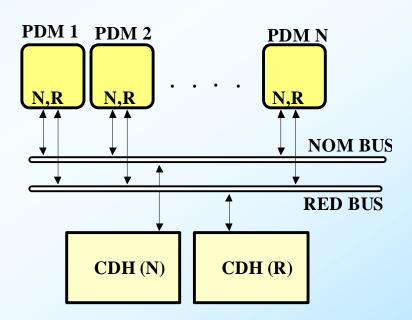
Power Distribution Trade-off

Pictorial view of the location of the power supply board:

Power Budget of the EUSO instrument


Photodetector Module

Item Name	Item Power (W)	Nr.of items	Total Power (W)
HV -MAPMT	0.025	x 36	0.9
HV - Converter (efficiency: 50%)	0.900	x 1	0.9
LV - ASIC	0.064	x 36	2.3
LV - Read-out and Control Electronics	2.100	x 1	2.1
LV - Converter (efficiency: 75%)	1.101	x 1	1.1
Total without margin			7.3
Total with margin (15%)			8.4


Item Name	Item Power (W)	Nr.of items	Total Power (W)
Photodetector Module	7.3	x 100	730
Control & Data Handling Unit	14	x 1	14
Total without margin			744
Total with margin (15%)			856

BIDIRECTIONAL SERIAL POINT TO POINT CONNECTION

BIDIRECTIONAL SERIAL BUS

BIDIRECTIONAL SERIAL POINT-TO-POINT CONNECTION

Seven differential (balanced) lines are proposed (Standard: EIA RS 422A), namely:

• Clock	from CDH;	(dedicated line)

- Clock Echo to CDH; (dedicated line)
- TC Data from CDH; (dedicated line)
- TM Data to CDH; (dedicated line)
- Load from CDH; (dedicated line)
- Save Frame from CDH; (dedicated line)
- PDM Trigger to CDH; (dedicated line)

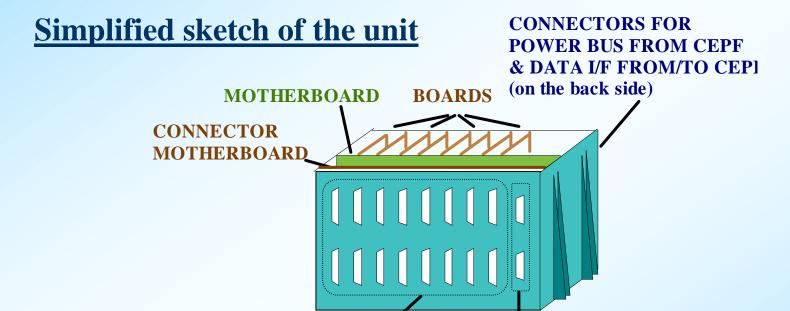
BIDIRECTIONAL SERIAL BUS

The PDM's are grouped in groups of ten-fifteen (max 31).

For each group, a differential (balanced) bus is proposed (Standard: EIA RS 485), namely:

• Clock	From CDH;	(broadcast to 10-15 PDMs)
• TC data	From CDH;	(broadcast to 10-15 PDMs)
• TM data	To CDH;	(bus-ed from 10-15 PDMs)
• Frame	From CDH;	(broadcast to 10-15 PDMs)
• Load	from CDH;	(broadcast to 10-15 PDMs)
• Save Frame	from CDH;	(dedicated line)
• PDM Trigger	to CDH;	(dedicated line)

BIDIRECTIONAL SERIAL POINT TO POINT CONNECTION:


- TESTING AT SUBSYSTEM LEVEL IS LESS COMPLEX;
- THE DATA EXCHANGE PROTOCOL IS SIMPLER.
- EASIER FAULT ISOLATION

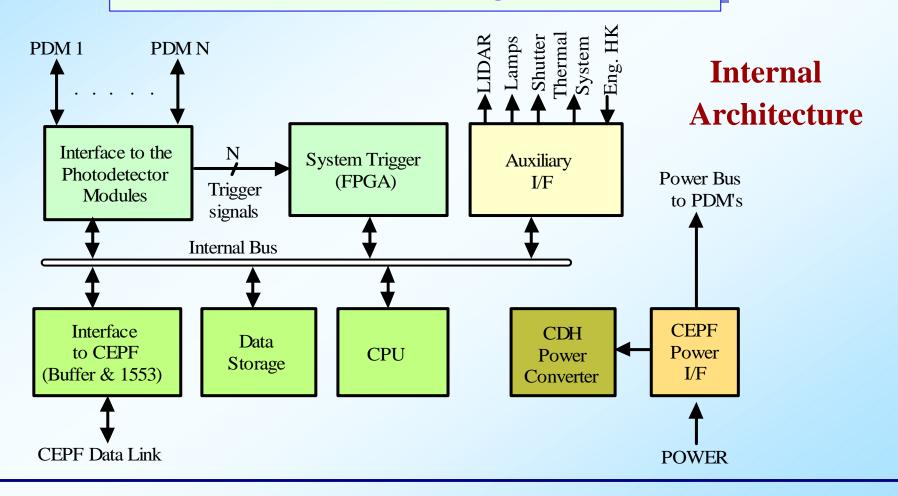
BIDIRECTIONAL SERIAL BUS:

- THE NUMBER OF WIRES IS REDUCED;
- A DEDICATED BUS PROTOCOL IS REQUIRED;
- THE MANAGEMENT OF THE PDM's I/F's IS MORE COMPLEX.

CONNECTORS FOR DATA LINK TO FOCAL SURFACE

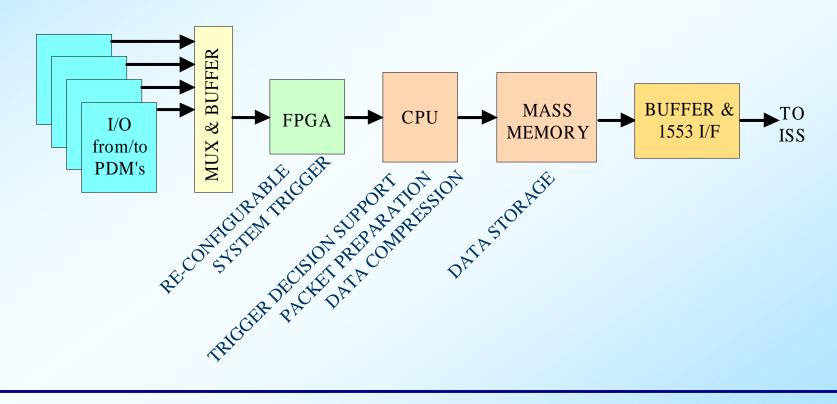
CONNECTORS FOR POWER BUS TO FOCAL SURFACE

Two identical units are planned in cold redundancy



List of the Main Functions

- Reception, validation, and execution of the TC's;
- Collection and evaluation of the scientific data, triggering at system level (dedicated application/scientific SW);
- Preparation of the scientific TM packets;
- Collection of the HK monitors and preparation of the HK TM packets;
- Storage of the TM packets;
- Management of the power distribution to the PDM's;
- Management of the settings (configuration) of the PDM's;
- Distribution of a programmable clock to the PDM's;
- Management of the shutter (actuators);
- Management of emergency situations;
- Management of the Thermal Control System (TBC).


List of the Main Features

- CPU suggested: ESA space-qualified **DSP TSC21020**
 - rad- tolerant;
 - 20 MIPS nominal;
 - 40 MFLOPS sustained;
 - 60 MFLOPS peak;
- Possibility of data compression;
- Mil-Std-1553 B interface to CEPF;
- SW reconfigurable trigger (FPGA);
- Quality level of EEE components: ESA SCC;
- Rad-tolerant components.

Data Flow Diagram

Telemetry Budget of the EUSO Instrument

Assumption on main telemetry parameters

Parameter	Value	Units	Notes
Downlink rate (minimum)	300	kbit/sec	ISS resource
Downlink duration	600	sec/orbit	orbit = 5400 sec
Downlink capability (minimum)	180	Mbit/orbit	
Allocated storage memory in CDH	180	Mbit	one orbit worth of data
EECR track duration (max)	300	GTU	GTU ≈ 1 uS
EECR storage requirements	256	bit/GTU·macrocell	X,Y, E & auxiliary info
Max memory needed per EECR event	700	kbit	9 macrocells
Expected EECR (E > 3 10^19 eV) rate	~ 10	events/day	

- The allocated telemetry storage resources largely exceed the euso needs for eecr observations;
- Additional needs can be fulfilled by dedicated strategies like on board pre-processing or data compression.