

CR Energy Spectrum

HiRes Experiment Air Fluorescence detector

Air Fluorescence technique

Measure Shower Development in the atmosphere Essentially Carolimetric measurement

AGASA

111 Electron Det.27 Muon Det.

Detector Calibration in AGASA experiment

Detector Position

Survey from Airplane ΔX , $\Delta Y = 0.1$ m, $\Delta Z = 0.3$ m

Cable delay (optic fiber cable)

Accuracy of 100ps by measuring the round trip time in each run

Detector Gain by muons in each run

Gain as a function of time (7 years data)

Linearity as a function of time (7 years data)

Energy Determination

- Local density at 600m
 - Good energy estimator by M.Hillas

E=200EeV, Emin = 160EeV

Attenuation curve

S(600) vs N_{ch}

10¹⁸eV Proton

S600 Attenuation curve

Detector Simulation (GEANT)

Detector Housing (Fe 0.4mm)
Detector Box (Fe 1.6mm)
Scintillator (50mm)
Earth (Backscattering)

Energy spectra of shower particles

The Conversion from S600 to Energy

The New Highest Energy Event (~3x10²⁰eV) on 10 May 2001

Energy Resolution

Angular Resolution

Major Systematics in AGASA

Energy Estimator S600	
Interaction Model	10%
Chemical Composition (P/Fe)	10%
Simulation Code	5%
Detector	
Detector Abs. Gain	3%
Detector Linearity	3%
Detector Response (Box Housing etc)	5%
Total	17%

Energy Spectrum by AGASA (θ <45)

The Energy spectrum by AGASA Red: Fully contained event

(Cut the event near the boundary of array)

HiRes I mono, HiRes II mono Energy Spectrum

AGASA vs. HiRes I mono, HiRes II mono

Original AGASA + Original HiRes

Original AGASA + HiRes x 1.1

Comparison of aperture

Possible Systematics in HiRes

- Detector Constant
 - Mirror Reflection / PMT gain / Photo-cathod uni.
- Air Fluorescence yield
 - Total yield is known with 10% accuracy
 - Yields of individual lines are not known well
- Light transmission in air
 - Rayleigh Scattering (∝ λ ⁻⁴)
 - Mie Scattering by Aerogel
 - Horizontal attenuation, Scale Height
 - Wind velocity, Temperature
 - Horizontal 14km (1999) → 20km (2001)
- Errors in Mono analysis

Mono Reconstruction

Fit: $t_i = t_0 + (R_p/c) \tan(\chi_0/2 - \chi_i/2)$

- Timing analysis
 - Degeneracy between Rp and ψ
- Xmax fit or Shower Profile fit was introduced
 - Possible systematic
 - chemical composition and Interaction dependent
 - Atmospheric correction dependent

The problems in both experiments

- AGASA
 - Energy estimation is dependent on Monte Carlo
 - Calibration by Air Fluorescence detector will be done in this winter with 4 x 3m² Shcmidt type telescopes (2sr FOV)
- HiRes
 - Atmosphere
 - More detail atmospheric monitoring should be done in online.
 For example, measure the extinction between the telescope and the shower track.
 - Detail air fluorescence yield measurement is highly required especially for 391nm line.
 - Stereo Spectrum is really desired (Mono analysis may introduce systematic errors)