
EUSO 1

The ROOT System
A Data Access & Analysis Framework

EUSO meeting LAPP
October 4 2001

René Brun

CERNhttp://root.cern.ch

EUSO The ROOT system 2

Project History

Jan 95: Thinking/writing/rewriting/???

November 95: Public seminar, show Root 0.5

Spring 96: decision to use CINT
Jan 97: Root version 1.0

Jan 98: Root version 2.0

Mar 99: Root version 2.21/08 (1st Intl Root workshop FNAL)

Feb 00: Root version 2.23/12 (2nd Intl Root workshop CERN)

Sep 00: Root version 2.25/03

Dec 00: Root version 3.00/01
Jun 01: 3rd International Root workshop at FNAL

In 1994, fundamental divergence of opinions in Application
Software group in IT. The PAW/Geant3 team is dismantled.

Fort
ran

90
??

?

C++,
Commercial

Software

C++
,

Ope
n

Sou
rce

ROOT

EUSO The ROOT system 3

The ROOT Project

1995 2000 2005

ROOT 0.5

ROOT 1.0

ROOT 2.0

ROOT 3.0

ROOT X.0

LEP,HERA,SPS

RHIC, FNAL/RUN II

LHC
Large Hadron Collider

Babar, KEK, SPS,FNAL

functionality

EUSO The ROOT system 4

1 billion people
surfing the Web

How Much Data is Involved?

105

104

103

102

Level 1 Rate
(Hz)

High Level-1 Trigger
(1 MHz)

High No. Channels
High Bandwidth
(500 Gbit/s)

High Data Archive
(5 PetaBytes/year)
10 Gbits/s in Data base

LHCB

KLOE

HERA-B

CDF II

CDF

H1
ZEUS

UA1

LEP

NA49
ALICE

Event Size (bytes)

104 105 106

ATLAS
CMS

106

107

STAR

EUSO The ROOT system 5

LHC Computing - a Multi-Tier Model

Department α β
γ

Desktop

CERN – Tier 0
(CERN - Tier 1)

Tier 1 X Y

Z
62

2 Mbp
s

2.5 Gbps

62
2

M
bp

s

15
5
mb

ps 155 mbps

Tier2 Lab a
Uni b Lab c

Uni n }Organising
Software:
"Grid-

Middleware"

}
"Transparent"
user access to
applications and

all data

'X''Y''Z': RAL, IN2P3,
FNAL, BNL, FZK(?), . . .

EUSO The ROOT system 6

Languages for Data Analysis

Data analysis requires an efficient access to objects
(both data and functions).
It requires a powerful programming language:

in interpreted AND compiled mode
Transition from interpreted mode to compiled mode must be
smooth and transparent.

A scripting language (eg Python) is not the solution
Java could be a candidate. However, severe
performance penalty. I/O is far too slow.
C++, the only realistic choice.

EUSO The ROOT system 7

A Scripting Language ?

With today desktop machines, it takes between a few seconds and one
minute to compile and dynamically link a realistic analysis script.

With computers becoming faster and faster, one may hope that in a few
years from now, dynamic compilation and linking will become affordable
for an increasing number of tasks.

Having the same language for the interpreted and the compiled codes
will be a tremendous advantage. On the other hand, nobody will trust
results produced by a pure interpreted language.

An interpreted language is fundamental for tasks that must be executed
rapidly, such as short scripts edited very frequently or all the tasks
called via the graphical user interface

EUSO The ROOT system 8

GUI

Commands

Interpreted
scripts

Compiled
scripts

With faster computers
we hope that this line

can be extended
downwards

EUSO The ROOT system 9

The Choice of CINT

Our goal was to combine the advantages of an interpreted and/or
compiled language in one single framework. To achieve this goal, we
had to develop a powerful object persistency system with as few
limitations as possible to support the main stream proposed OO
language C++.

We were lucky to find an existing C++ interpreter CINT capable of
parsing the complex C++ header files and to support a very large
subset of the language interactively. CINT was developed by Masa Goto
from HP/Japan since 1992.

We developed an extended Run Time Type Information (RTTI) used in
the I/O system but also in many other places including the Graphical
user Interface. This RTTI goes far beyond the C++ RTTI and looks more
like the Introspection mechanism in Java.

EUSO The ROOT system 10

Rootcint Preprocessor

UserClass1.hUserClass1.hUserClass1.hUserClass1.hUserClass1.hUserClass1.h

rootcint

UserCint.C

C++ code
to create
the RTTI

Interface for
CINT interpreter

Streamers

EUSO The ROOT system 11

Any User class library
with the RTTI info

can be plugged into
a ROOT executable

and its functions
called interactively

EUSO The ROOT system 12

ROOT User Interfaces

The ROOT
browser

The Command line
interface

The C++ script
interface

Command line
C++ scripts

GUI

EUSO The ROOT system 13

GUI User example

Example of
GUI

based on ROOT
tools

Each element
is clickable

EUSO The ROOT system 14

The Graphics Event Loop

The ROOT event handler supports:
keyboard interrupts
system signals
X11, Xt, Xm events
Sockets interrupts
Special messages (shared memory, threads..)

Foreign systems (eg Inventor, X3d..) can easily
be integrated in the ROOT loop.

ROOT will dispatch the foreign events using Timers.

Signals and Slots like in Qt
Qt and ROOT can work together

EUSO The ROOT system 15

2-D Graphics

Basic primitives (lines, text, markers, box, polygones, fills)

Graphs, annotators (pave, pavetext, pavelabel)

LateX support (screen and PostScript)

Graphics Editor

Pad Graphics via abstract class TVirtualPad

Basic graphics via abstract class TVirtualX

(TGX11, TGWin32)

TObject::Draw/Paint

TObject::DistancetoPrimitive/ExecuteEvent

EUSO The ROOT system 16

Full LateX
support

on screen
and

postscript

TCurlyArc
TCurlyLine
TWavyLine

and other building
blocks for
Feynmann
diagrams

Formula or
diagrams can

be
edited with
the mouse

EUSO The ROOT system 17

3-D Graphics

Basic primitives
TPolyLine3D, TPolyMarker3D, THelix, TMarker3DBox,TAxis3D

Geant primitives
Support for all Geant3 volumes + a few new volume types
TBRIK,TCONE,TCONS,TCTUB,TELTU,TGTRA,THYPE,TPARA,TPCON,
TPGON,TSPHE,TTUBE,TTUBS,TTRAP,TTRD1,TTRD2,TXTRU

Rendering with:
TPad
X3D (very fast. Unix only. Good on networks)
OpenGL
OpenInventor (new addition in 3.01)

EUSO The ROOT system 18

ROOT + OpenInventor

CMS with Geant3
converted
via g2root

to ROOT TNodes

EUSO The ROOT system 19

ROOT and the WEB

An Apache Web-server plug-in module is being
developed (presented at FNAL workshop).
Provides interactive access to ROOT files, CINT
macros and all the graphics. Web pages
generated on the fly.
Interesting alternative to PHP using C++ as an
embedded scripting system with full access to
user classes dynamically

EUSO The ROOT system 20

Apache plug-in TApache

Click here
to execute
CINT script

Click here
to browse

this ROOT file

EUSO The ROOT system 21

Apache plug-in TApache

TCanvas interface URLs
of ROOT files

EUSO 22

The Histogram Package

EUSO The ROOT system 23

The Histogram Classes

Structure
1-Dim

2-Dim

3-Dim

EUSO The ROOT system 24

Random Numbers and Histograms

TH1::FillRandom can be used to randomly fill an histogram using
the contents of an existing TF1 analytic function

another histogram (for all dimensions).

For example the following two statements create and fill an histogram
10000 times with a default gaussian distribution of mean 0 and sigma 1:

TH1F h1("h1","histo from a gaussian",100,-3,3);
h1.FillRandom("gaus",10000);

TH1::GetRandom can be used to return a random number distributed
according the contents of an histogram.

EUSO The ROOT system 25

Fitting Histograms with Minuit
Histograms (1-D,2-D,3-D and Profiles) can be fitted with a user specified function via TH1::Fit.
Two Fitting algorithms are supported: Chisquare method and Log Likelihood

The user functions may be of the following types:
standard functions: gaus, landau, expo, poln
combination of standard functions; poln + gaus
A C++ interpreted function or a C++ precompiled function

An option is provided to compute the integral of the function bin by bin instead of simply
compute the function value at the center of the bin.
When an histogram is fitted, the resulting function with its parameters is added to the list of
functions of this histogram. If the histogram is made persistent, the list of associated functions
is also persistent.
One can retrieve the function/fit parameters with calls such as:

Double_t chi2 = myfunc->GetChisquare();
Double_t par0 = myfunc->GetParameter(0); //value of 1st parameter
Double_t err0 = myfunc->GetParError(0); //error on first parameter

EUSO The ROOT system 26

Fitting Demo

Look at
FittingDemo.C

Unnamed Macro
fitf.C

Named Macro
Run FittingDemo.C
More info on fitting:
http://root.cern.ch/root/html/examples/fit1.C.html
http://root.cern.ch/root/html/examples/myfit.C.html
http://root.cern.ch/root/html/examples/backsig.C.html

EUSO The ROOT system 27

Combining Functions

y(E) = a1 + a2E + a3E2 + AP (Γ / 2 π)/((E-µ)2 + (Γ/2)2)
background lorenzianPeak

par[0] = a1 par[0] = AP
par[1] = a2 par[1] = Γ
par[2] = a3 par[2] = µ

fitFunction = background (x, par) + lorenzianPeak (x, &par[3])
par[0] = a1
par[1] = a2
par[2] = a3
par[3] = Ap
par[4] = Γ
par[5] = µ

Functions with
many parameters (> 200)

can be minimized.
No limitations like in Minuit

EUSO The ROOT system 28

Drawing Histograms
When you call the Draw method of a histogram for the first time
(TH1::Draw), it creates a THistPainter object and saves a pointer to painter
as a data member of the histogram.
The THistPainter class specializes in the drawing of histograms. It is
separate from the histogram so that one can have histograms without the
graphics overhead, for example in a batch program. The choice to give
each histogram have its own painter rather than a central singleton painter,
allows two histograms to be drawn in two threads without overwriting the
painter's values.
When a displayed histogram is filled again you do not have to call the Draw
method again. The image is refreshed the next time the pad is updated.
The same histogram can be drawn with different graphics options in
different pads.
When a displayed histogram is deleted, its image is automatically removed
from the pad.

EUSO The ROOT system 29

1-D drawing Options
Any object in the canvas
is clickable and editable

EUSO The ROOT system 30

1-D drawing Options

Simple text
or LateX

can be typed
interactively

EUSO The ROOT system 31

2-D drawing Options

All these
plots can be
rotated with
the mouse

EUSO The ROOT system 32

2-D drawing Options

Same output
on the screen and with

vector Postscript

EUSO 33

ROOT Data Base Approach

EUSO The ROOT system 34

Data Bases: model-1

Put everything in an Object Data base
like Objectivity
or Oracle 9i

Choice of RD45 project
Many experiments initially following this line
Abandonned by most experiments recently
Solution not suited for interactive analysis

EUSO The ROOT system 35

Data Bases: model-2

Put write-once data in an object store
like ROOT in Streamer mode

Use a RDBMS for :
Run/Event catalogs
Geometry, calibrations
eg with ROOT<->Oracle interface

http://www.phenix.bnl.gov/WWW/publish/onuchin/rooObjy/

or with ROOT <-> Objectivity interface
http://www.phenix.bnl.gov/WWW/publish/onuchin/RDBC/

Use ROOT split/no-split mode for data analysis

Combining
2 technologies

ROOT

Oracle

EUSO The ROOT system 36

ROOT + RDBMS Model

histograms

Calibrations

Geometries

Run/File
Catalog

Trees

Event Store

ROOT
files

Oracle
MySQL

EUSO The ROOT system 37

ROOT working with Objectivity

Objy and ROOT
can work together

An interactive interface
developed by Phenix

EUSO The ROOT system 38

ROOT working with Oracle (2)

ODBC
compliant
interface
to Oracle

EUSO The ROOT system 39

ROOT I/O -- Sequential/Flat

Object in
memoryObject in

memoryObject in
memoryObject in

memoryObject in
memory

Streamer

TFile

Object in
memory

ObjectGramTBuffer

Transient Object
is serialized

by the Streamer
No need for

transient/persistent
classes

TWebFile
web server

TNetFile
rootd

TRFIOFile
RFIO daemon

TMapFile
shared memory

sockets

http

EUSO The ROOT system 40

Streaming Objects
root [0] TFile micro(”demo.root","new")
root [1] TH1F hg("hg","filled with a gaussian",100,-4,4)
root [2] hg.FillRandom("gaus",5000)
root [3] hg.Write()
root [4] micro.Map()

20000511/092959 At:64 N=92 TFile
20000511/093055 At:156 N=423 TH1F CX = 2.10

root [5] .q The Write function
calls TH1F::Streamer

The Streamer function
generated by rootcint
fills a buffer with all

the constituents of the
object

EUSO The ROOT system 41

Root objects or
any User Object can be
stored in ROOT folders

and browsed

EUSO The ROOT system 42

A Root file pippa.root
with two levels of

directories

Objects in directory
/pippa/DM/CJ

eg:
/pippa/DM/CJ/h15

EUSO The ROOT system 43

LAN/WAN files

Files and Directories
a directory holds a list of named objects

a file may have a hierarchy of directories (a la Unix)

ROOT files are machine independent

built-in compression

Support for local, LAN and WAN files
TFile f1("myfile.root")

TFile f2("http://pcbrun.cern.ch/Renefile.root")

TFile f3("root://cdfsga.fnal.gov/bigfile.root")

TFile f4("rfio://alice/run678.root")

Local file

Remote file
access via

a Web server

Remote file
access via

the ROOT daemon

Access to a file
on a mass store

hpps, castor, via RFIO

EUSO The ROOT system 44

Automatic Schema Evolution

EUSO The ROOT system 45

Auto Schema Evolution (2)

EUSO The ROOT system 46

Self-describing files

Dictionary for persistent classes written to the
file.
ROOT files can be read by foreign readers (JAS)
Support for Backward and Forward compatibility
Files created in 2001 must be readable in 2015
Classes (data objects) for all objects in a file can
be regenerated via TFile::MakeProject

Root >TFile f(“demo.root”);

Root > f.MakeProject(“dir”,”*”,”new++”);

EUSO The ROOT system 47

Why Trees ?

Any object deriving from TObject can be written to a file
with an associated key with object.Write()
However each key has an overhead in the directory
structure in memory (about 60 bytes). Object.Write is
very convenient for objects like histograms, detector
objects, calibrations, but not for event objects.but not for event objects.

EUSO The ROOT system 48

Why Trees ?

Trees have been designed to support very large
collections of objects. The overhead in memory is in
general less than 4 bytes per entry.
Trees allow direct and random access to any entry
(sequential access is the best)
Trees have branches and leaves. One can read a subset
of all branches. This can speed-up considerably the data
analysis processes.

EUSO The ROOT system 49

Tree Creation Example

A few lines of code
to create a Tree

for structures
that may be

very complex

EUSO The ROOT system 50

Chains of Trees

A TChain is a collection of Trees.
Same semantics for TChains and TTrees

root > .x h1chain.C
root > chain.Process(“h1analysis.C”)

{
//creates a TChain to be used by the h1analysis.C class
//the symbol H1 must point to a directory where the H1 data sets
//have been installed

TChain chain("h42");
chain.Add("$H1/dstarmb.root");
chain.Add("$H1/dstarp1a.root");
chain.Add("$H1/dstarp1b.root");
chain.Add("$H1/dstarp2.root");

}

Chain.Add(“$H1/dstar*.root”);

EUSO The ROOT system 51

Tree Friends

Root > TFile f1(“tree1.root”);

Root > tree.AddFriend(“tree2”,“tree2.root”)

Root > tree.AddFriend(“tree3”,“tree3.root”);

Root > tree.Draw(“x:a”,”k<c”);

Root > tree.Draw(“x:tree2.x”,”sqrt(p)<b”);

x

Processing time
independent of the
number of friends
unlike table joins

in RDBMS

EUSO The ROOT system 52

ROOT I/O -- Split/Cluster
Tree version

Streamer

File

Branches

Tree in memory

Tree entries

In Split mode
objects of the same type
are automatically sorted.

This makes selective reading
much faster

EUSO The ROOT system 53

8 Branches of T

8 leaves of branch
Electrons

A double-click
to histogram

the leaf

EUSO The ROOT system 54

The Tree Viewer & Analyzer

A very powerful class
supporting

complex cuts,
event lists,

1-d,2-d, 3-d views
parallelism

EUSO The ROOT system 55

Automatic Code Generators

Data sets can be analyzed by the same classes used to
store the data.
However, one must be able to read the data without
these original classes. The classes may not be available
after some time.
Root provides two utilities to generate a class skeleton
to read the data, still preserving the attribute names,
types and the structure.

TTree::MakeClass
TTree::MakeSelector

This point is important.
You can always analyze

a data set even if you have lost
the class(es) that generated

this data set

EUSO The ROOT system 56

TTree::MakeClass
tree.MakeClass(“myClass”); generates two files: myClass.h and
myClass.C

myClass.h contains the class declaration and member functions
code that is selection invariant.

myClass.C contains an example of empty loop where one can insert
the analysis code
Usage:

root > .L myClass.C or .L myClass.C++
root > myClass xx;
root > xx.Loop();

Use the interpreter

Use the native compiler
The file myClass.C

is automatically compiled
and linked !!

EUSO The ROOT system 57

TTree::MakeSelector
tree.MakeSelector(“myClass”); generates two files: myClass.h and
myClass.C that can work in a parallel system like PROOF. The event loop is
not under user control.

myClass.h contains the class declaration and member functions code that is
selection invariant.

myClass.C contains the skeleton of 4 functions: Begin, ProcessCut,
ProcessFill, Terminate.

Usage:
root > tree.Process(“myClass.C”);
root > chain.Process(“myClass.C++”);

Macro is
automatically

compiled
and linked

EUSO 58

GRIDs and PROOF

EUSO The ROOT system 59

PROOF and GRIDs
The PROOF system allows parallel processing of chains of trees on
clusters of heterogeneous machines. Its main features are:

Transparency, scalability, adaptivity
A first prototype developed in 1997 as proof of concept (only for
simple queries resulting in 1D histograms)

We are now implementing the system taking into the most recent

developments in the GRID middleware.

EUSO The ROOT system 60

ROOT/PROOF and GRIDs

Selection
Parameters

DB1

DB4

DB5

DB6

CPU

Local

Remote

Procedure

Proc.C

Proc.C

Proc.C

Proc.C

Proc.C

PROOF
CPU

CPU

CPU

CPU

CPU

TagDB

RDB

DB3

DB2

As much as possible
move the task to the data

instead of moving data

EUSO The ROOT system 61

Parallel Script Execution

root

Remote PROOF Cluster

proof

proof

proof

TNetFile

TFile

Local PC

$ root

ana.C
stdout/obj

node1

node2

node3

node4

$ root

root [0] .x ana.C

$ root

root [0] .x ana.C

root [1] gROOT->Proof(“remote”)

$ root

root [0] .x ana.C

root [1] gROOT->Proof(“remote”)

root [2] gProof->Exec(“.x ana.C”)

ana.C

proof

proof = slave server

proof

proof = master server

#proof.conf
slave node1
slave node2
slave node3
slave node4

*.root

*.root

*.root

*.root

EUSO The ROOT system 62

Summary

We are implementing a powerful system designed for
large scale data analysis with parallel architectures in a
GRID context.
The ROOT system is a framework providing a coherent
object bus in DAQs, simulation, reconstruction and
analysis phases.
We have learnt a lot in the past 6 years, also following
our 10 years of experience with PAW.
Developing the system and at the same time supporting
a rapidly growing users base is a demanding but also
rewarding job.

EUSO The ROOT system 63

ROOT: an Evolving System

The ROOT system has been in continuous development
since 1995 surviving major changes, major
enhancements and an ever increasing number of users.
Major developments must still be done to be ready for
the fantastic LHC challenge.
In the same way that Root2001 is far from the original
Root1995, we expect that Root2006 will include many
contributions reflecting the continuous changes and new
ideas in the field of computing.
This implies a strong cooperation between software
developers in the major experiments.
Root is being developed in very close cooperation with a
cloud of software developers in small, medium and large
experiments. Computer scientists from non-HEP fields
are also contributing.

EUSO The ROOT system 64

ROOT Downloads

128,000 binaries
download

650,000 clicks
per month

30,000 docs
in 12 months

2200 reg users
in roottalk

EUSO The ROOT system 65

ROOT Users in the large experiments

ATLAS 133 WA98 25 LIGO 7
ALICE 120 BELLE 22 INTEGRAL 6
CDF 88 COMPASS 22 SNO 6
PHENIX 86 KLOE 19 CELESTE 5
CMS 85 ALEPH 18 HESS 5
STAR 82 OPAL 17 VIRGO 5
JLAB 77 AUGER 16
D0 70 MINOS 16
BABAR 69 NOMAD 16
H1 48 BRAHMS 15
L3 43 GLAST 14
HERAB 37 AMS 12
NA49 37 NA45 12
LHCB 35 NA48 11
DELPHI 34 AMANDA 10
ZEUS 32
HADES 27
PHOBOS 27

Registered users
in the ROOT system

